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T H E  P E R I O D I C  M O T I O N S  O F  A G A S t  

L. V. O V S Y A N N I K O V  

Novosibirsk 

(Received 12 March 2001) 

Two-dimensional periodic motions of a gas, described by a class of rotational and rotational-symmetrical exact solutions of 
the gas-dynamic equations, are considered. The investigation is based on constructing first integrals and a lemma on the 
existence of periodic functions, defined by quadratures of special form. The idea of limiting relations is introduced, which enable 
approximate relations to be established between the constituent parameters and which give a qualitative representation on the 
form of the periodic gas motion being investigated. In addition to examples of a limit analysis of previously known motions, an 
existence theorem of a new form of periodic motion called a "gaseous pinion" is presented. © 2001 Elsevier Science Ltd. All 
rights reserved. 

1. I N T R O D U C T I O N  

The time-periodicity of the motion of an ideal gas when there are no external forces distributed over 
the mass is an exceptional phenomenon. In view of the finiteness of the propagation velocity 
of perturbations in a gas, this form of motion can easily collapse. From this point of view, time-periodic 
motions are similar to steady gas flows. Hence, the question of the existence of this form of motion 
is not trivial. Only two examples of such motion are known so far: rest and rigid-body rotation. This 
paper proves the existence of new forms of gas motions, that are periodic in time. They occur in classes 
of two-dimensional rotational and rotational-symmetrical exact solutions of the gas-dynamic 
equations. 

Two-dimensional motions of a polytropic gas with an equation of state (~, is the adiabatic exponent) 

p = sp~ (1.1) 

are described by the required quantities: the radial component  of the velocity vector V and the circular 
component  of the velocity vector IV, the density p, the pressure p and the entropy s, considered as a 
function of the time t and the polar coordinates r, 0. The corresponding system of differential equations 
admits of (in Lie's sense) a two-dimensional group G2(H1, H2) with a basis of Lie algebra of operators 

H~ = c¢0,- 1300 (a  2 + 13 z ¢ 0) 

H 2 = r~ r + V~ V + W ~  W +np~ o + (n + 2) p3p + ms~ s 

where a, 13 and n are arbitrary constants and 

m = n + 2 - ny (1.2) 

The group G 2 generates an invariant submodel - a system of ordinary differential equations for certain 
functions of the independent variable 

= s0 + (1.3) 

Since the group G 2 is Abelian, the G2-submodel can be constructed in two stages: initially as 
an invariant Gl(H1)-submodel and then one can obtain from it an invariant Gl(H2)-submodel 
[1]. This method is convenient here since it simplifies the integration of the equations of the G2-submodel. 

At the first stage, all the required quantities V, W, p, p and s are regarded as functions of the 
independent variables (~, r), while the equations of the Gl(H1)-submodel have the form 
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D V  +p-Jrpr = W 2 

D W  + p-~txp~ = - V W  (1.4) 

Dp +p(V+ rV r +o~W~ ) = 0 

D s = O  

with total derivative operator  D = (c~W + 13r) O~ + rV0r and equation of state (1.1). 
At the second stage, in system (1.4) expressions for the required quantities are established in terms 

of the invariants A . . . . .  S of the opera tor / /2  

V = r A ,  W = r B ,  p = r n R ,  p=r"+2P,  s = r " S  (1.5) 

whereA . . . .  , S are functions of ~ (1.3) only. This leads to the following equations of the G2-submodel 
(the prime denotes derivatives with respect to ~) 

(c~B + 13)A' + A 2 - B 2 + (n + 2)P / R = 0 

(c~B + 13)B" + 2AB + o~P" I R = 0 

( ctB + 13)R' + (n + 2 )AR + otRB" = 0 

(ctB+fJ)S" + m A S = O ,  P = S R  ~ 

(1.6) 

R e m a r k  1. The parameters cz and 13 are not essential and are only introduced to make the writing 
of systems (1.4) and (1.6) uniform. They can be changed by multiplying the operator H 1 by an arbitrary 
factor and by stretching the time t. These changes lead to subgroups G2, contained within G2, and 
thereby lead to solutions which can be obtained from the "standard" ones by a change of variables. 
Hence, it is sufficient to consider solely classes of "standard" solutions, for which (ct, 13) = (0, 1) or 
(¢x, 13) = (1, 13), where ~ = 0 or 13 = 1. 

2. P E R I O D I C I T Y  C O N D I T I O N S  

The problem consists of finding solutions of system (1.6) which describe gas motions that are periodic 
in t. In this section we will derive the conditions for such solutions to exist. Here we will assume that 
the circular velocity W > 0 (this property is satisfied in all the examples considered below). 

The equation of the trajectories of the gas particles dr/dt = V, r dO/dt = Wfor  solutions of the form 
(1.5) reduce to the following 

d r / d t  = rA(~), d O / d t  = B(~) 

while the evolutioll of ~ (1.3) along the trajectories is described by the equation 

(2.1) 

d~ / d t  = otB(~) + 13 (2.2) 

Suppose the functions r(t) and 0(t) form a solution of system (2.1), i.e. describe the orbits of the motion 
of the gas particles. For periodicity it is necessary that the orbits should be closed curves in the (r, 0) 
plane. Suppose T is the minimum orbital period of such motion, i.e. for any t the following equations 
hold 

r(t  + T) = r(t), 0(t + T) = 0(t) + 2n (2.3) 

In this case the invariant coordinate ~ (1.3) obtains an increment 

~(t + T) = ~(t) + ~K, ~l = 2ha  + 13T (2.4) 

If follows from (2.1) that the functionsA(~) and B(~) must be periodic with period ~1, which, generally 
speaking, will not necessarily be the minimum period of these functions. If the latter is ~,  we must have 
~1 = v ~  with a certain integer v ¢ 0. The quantity • will be called the phase period. Thus, the orbital 
and phase periods are related by the expression 
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v ~  = 2rtoc + 13T (2.5) 

Nevertheless, it is obvious that the first relation of (2.4), by virtue of Eq. (2.2) with right-hand side that 
is positive and ~-periodic in ~, is equivalent to 

q~ 

T = vj  [c~B({)+lg]-'d{ (2.6) 
0 

From (2.1) and (2.2) we can determine invariant trajectories with the equation r = r(~), which will 
be ~-periodic in the plane of the polar coordinates (r, ~). For the solution (1.5) to be periodic it is 
necessary that the invariant trajectories should be closed curves, i.e. that r(~ + 2rt) = r(~). This will be 
true if and only if the following relation is satisfied with a certain integer p. ~ 0 

p.~ = 2n (2.7) 

Remark 2. If cc - 0, Eqs (2.5) and (2.6) yield the same relation 

v ~  = I3T (2.8) 

In this case ~ = [3t and the period • can be calculated in terms of a quadrature of the second equation 
of (2.1). By virtue of relation (2.8) the condition that 0(t) should change over the period T by 2rt reduces 
to the equation 

vj B(~)d~ = 2 ~  
0 

We finally obtain the following result. 

Proposition 1. In order for Eqs (1.5) to describe the time-periodic gas motion with orbital period T, 
it is necessary and sufficient that the corresponding solution of system (1.6) should be periodic with 
phase period ~, where the periods T and qb are related with certain non-zero integers g and v by relations 
(2.4)-(2.7), namely 

T=vS[~:~B(~)+Ig]-~d~, v~=2noc+[3T, ta~=2r t  (2.9) 
0 

the first of which, when cc = 0, is replaced by the relation 

q~ 

v S B(~)d~ = 2rcl3 (2.10) 
0 

All these conditions were obtained above as necessary conditions. Suppose they are satisfied. Then, all that needs 
to be proved is to establish the second equality of (2.3). From the first equality of (2.4), which is equivalent to the 
first equality of (2.9), it follows that 

~(t + T)  = ~(t) + vq~ = ~(t) + 2/toe + I3T 

which, after substituting expression (1.3), reduces to cc0(t + T) = o~0(t) + 2nee Hence, when ct ¢ 0 we obtain the 
required equality. If cc = 0, the second equality of (2.3) easily follows from the quadrature of the second equation 
of (2.1) by virtue of relations (2.9) and (2.10). Proposition 1 is thereby proved. 

The periodicity conditions established here connect the phase and orbital periods by three relations. 
Nevertheless the phase period (if it exists) must be determined by the solution of system (1.6). This 
means that, from conditions (2.9) and (2.10) for the periodic solutions, we obtain certain relations for 
the other parameters of the problem: the factors n and y and the integration constant. 
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3. THE F I R S T  I N T E G R A L S  

From the third equation of (1.4), rewritten in the form 

[(~W + 13r)p]~ + (rVg) r = 0 

it follows that an "invariant stream function" ~(~, r) exists, from which 

(~W+13r)p = ~r,  rVp = - ~  (3.1) 

The function ~ is the solution of the equation D~  = 0 and keeps a constant value along the integral 
curves of the equation 

dr / d~ = rV /(t~W + ~r) (3.2) 

by virtue of which these curves are called "invariant streamlines". 
Moreover, ~ is a Lagrange coordinate, and hence any solution of the form (1.5) gives a description 

of the motion of a mass of gas bounded by certain (arbitrary) "invariant streamlines" like impenetrable 
walls, which can themselves be mobile in the physical plane (r, 0). 

Any function F(~, r) satisfies the equation DF = 0 if and only if it is a function of gt, i.e. F = F (~). 
Hence, it is convenient to use the function ~ to find the integrals of system (1.4). Thus, the last equation 
of (1.4) gives the entropy integral 

s = s(V) (3.3) 

Further, we will first assume that ct ~ 0. By multiplying the first of equations (1.4) by c~V and the 
second by ctW + 13r and adding the results, we obtain the energy integral (the analogue of Bernoulli's 
integral for the steady gas flow 

tx(V 2 + W 2) + 2~rW + 2ct )' --P = 2H(~t) (3.4) 
T - I p  

in deriving which we used Eqs (1.1) and (3.3). 
The function ~ is found explicitly in the class of solutions (1.5) (we will henceforth assume than 

n ~ -2). Expressions (3.1) take the form 

~r = r"+)(C~g+~) R, ~ =-r"+2AR 

whence (apart from an unimportant constant term) 

(n + 2 )~  = r"+2(o~B+ ~)R (3.5) 

This enables us to specify s(~) and H(gt) in integrals (3.3) and (3.4). By virtue of representation (1.5), 
integral (3.3) has the form rmS(~) = s(Ig). Substitution from (3.5) 

r = [(n + 2)~/({xB + [~)R] 1/("+2) (3.6) 

leads to separation of the variables ~ and ~, which gives the dependence of the entropy on 

s(~) = s0~ "/("+2) 

with an arbitrary constant So and a value of the "invariant entropy" 

S((~) = [(orb + I3)R]"/(,,+2) (3.7) 

Hence, the invariant equation of state takes the form of the relation 

P = (orb + [~)m/(n+2) R(n+Z+27)l(n+2) (3.8) 
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A similar procedure with integral (3.4) gives the dependence of the "energy constant" H on 

H(~) = [(n + 2)~] 21("+2) 

while the energy integral (3.4) takes the form of the relation 

ot(A 2 + B 2 ) + 21$B + 2a  Y P = 2h[((:tB + 15)R] 2/(" +2) (3.9) 
] ( - I R  

with arbitrary constant h. 
It turns out that system (1.6) when (~ ~ 0 has one other additional integral, obtained by the following 

construction. We introduce two new required functions X(~) and Y(~) 

Y=(17,B+I3) -l, X =  Y P I R  (3.10) 

By virtue of Eq. (3.8) the quantities R, X and Y are connected by the relation 

Y"~R 2't = X "+2 (3.11) 

Hence, the functions B, R and P are expressed explicitly in terms of X and Y. Substituting these 
expressions into the second and third equations of (1.6) we obtain the equations 

(o~2"yXY - 1)X' = ~[AXy2[ot2(n + 2)X + 215] (3.12) 

(ot27Xy - I)Y" = A y2 [~2 (n + 2 + 2y)XY + 2[3Y - 2 ] 

Hence we obtain the following linear equation for the function Y = Y(X) 

d__(_Y = [a 2 (n + 2 + 2y)X + 215]Y - 2 (3.13) 
d X  yX[e t2 (n+ 2 ) X  + 215] 

the general solution of which also gives the required additional first integral of system (1.6). 
R e m a r k  3. For certain values of the factors n and y the general solution of Eq. (3.13) can be expressed 

in terms of elementary functions. When n > 0 this holds for matched factors 

n + 2 = n 7 (3.14) 

In this case it follows from Eq. (1.2) that m = 0, which, by virtue of relations (1.5) and (3.7), leads to 
isentropic gas motions. 

For matched factors the general solution of Eq. (3.13) is given by the following formulae (with arbitrary 
constant k) 

Y = k X  I Ir(o~2nyX + 215) ('t-I)/v + (otn 7 / 215) 2 X + 1 /I $ (15 ~ 0) (3.15) 

Y=kX +(a2nT2X)-I (15=0) 

When ~ = 0 (13 ~ 0), integral (3.9) takes the form 

B = hlR 21(n+2) (3.16) 

with a certain constant ha, while the invariant pressure P, obtained from (3.8), with appropriate 
normalization, is given by the formula 

P = RB r (3.17) 

The additional integral here is derived from the first two equations of (1.6), which take the form 

15A' + A 2 - B 2 + (n + 2)B v = O, ~B" + 2 A B  = 0 (3.18) 
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Hence it follows that the function A2(B) satisfies a first-order linear equation, the integration of which 
also gives the required integral (with an arbitrary constant h) 

A2 + B2 _ n +__._~2 By = hB (3 .19)  
7 - 1  

4. KEY E Q U A T I O N S  

The first integrals obtained above show that for the complete solution of system (1.6) it is sufficient to 
obtain the relation between one of the required functions and ~. This operation reduces to a single 
quadrature - the solution of a certain key equation. 

When c~ e 0, we can take as the required function X(~), the derivative of which is given by the first 
equation of (3.12), where Y = Y(X) is defined by an additional integral - the solution of Eq. (3.13) (for 
matched factors of formula (3.15)), while the functionA = A(X) is found from the energy integral (3.9). 
After substituting expressions (3.8) and (3.10) we rewrite the energy integral in the form 

When a ~ 0 we thereby obtain the key equation 

t 
(4.2) 

When c~ = 0, we take as the required function B(~), the derivative of which is given by the second 
equation of (3.18), while the functionA = A(B) is found from the additional integral (3.19) 

n +  A 2=hB-B  2+ 2BV (4.3) 
y - I  

The corresponding key equation is 

The specific feature of these equations is the fact that, in the required solutions, the function A 2 is 
a unique function of X or B, whereas the function A(X) or A(B) will be two-valued. 

5. P E R I O D I C  S O L U T I O N S  

Digressing for the moment from these specific problems, we will point out some general features. 
Suppose the functionf(X) is continuously differentiable in the open interval ACR(X). Consider the 

differential equation for the function X(~) 

(dX / de) 2 = f(X) (5.1) 

Proposition 2. If a closed interval [XbX2]CA exists such that: (a) f(X1) = f(X2) = 0, (b) f(X) > 0when 
X1 < X < X2 and (c) f '(Xl) > 0,f'(X2) < 0, Eq. (5.1) has a periodic solutionX(~), even in ~, with period 

x2 dX 
H = 2 I ~[f(X) (5.2) 

Xt 

In fact, the required solution is constructed as follows: for 0 ~< ~ ~< [I/2 we take X'(¢) = ,fiX) > O, X(¢) is 
defined by the quadrature 
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x(~,) dX 

xi 

and, by virtue of (5.2), takes the value X(1-I/2) = X:. For I-I/2 ~< ~ ~< H we take X'(%) = - ,  fiX) < 0, X(%) is defined 
by the quadrature 

x2 dX H 

x ) 2 

and, by virtue of (5.2), we take the value X(II) = X1. The solution constructed in the interval (0, II) is continued over 
the whole axis R(~) as periodic with period II. It will obviously be even with respect to ~. 

In  practice, finding the interval [X1, X2], which satisfies condit ions ( a ) -  (c), may not be a simple 
problem. The following sufficient condition, which uses the dependence  of  the r ight-hand side in (5.1) 
on a certain pa ramete r  ~., serves this purpose.  

Consider  the equat ion  

(dX  / d~) 2 = f ( X ,  ~,) (5.3) 

and assume that in a certain region f2CR2(X, ;~) the function f(X, X) is triply continuously differentiable. 

L e m m a  1. If  a point  M(Xo ,  X0) E f2 exists at which 

l ) f (M) = 0, fx(M) = 0; 2)f~(M) > 0, fxx(M) < 0 

then, for any sufficiently small e, the equat ion 

(dX / d~) 2 = f (X,  ~,0 + c2 ) (5.4) 

has a periodic solution X~(~) with period 

H E = 2 r ~ l b + O ( c )  (5.5) 

and, over any finite interval in ~(~), the following representat ion holds 

Xt(~) = X 0 - rr~a cos b~ + O(e 2) (5.6) 

where  the positive constants  a and b are given by the equat ions 

a 2 = 2fx(M)/Ifxx(M)l 2b 2 = ]3~x (M)I (5.7) 

Proof. The  graphs of the functions f iX ,  ;%) and f iX ,  ~o + E2) in the neighbourhood of the point X0, which 
result from conditions I and 2, show that for the functionsf(X, X 0 + e2) the interval [X1, X2], required in Proposition 
2, exists. It remains to establish that representations (5.5) and (5.6) hold. Suppose X = X 0 + x; it is clear that 
the differences X o - X  1 and X 2 - X  o and the quantity x are of the order of ~. By virtue of conditions 1 the expansion 
of the function f(Xo, + x, ~,o + e2) using Taylor's formula at the point M(Xo, ;%) in the notation of (5.7) has the 
form 

f ( X  0 + x, K o +e2)=  b2(e2a 2 _ x  2 +O(•3)) 

Replacement of the variables ({, x) ---) (rh y) using the formulae r I = bE, x = eay reduces Eq. (4.4) to 
2 2 (dy/d~q) = 1-y + eg with a continuous bounded functiong(y, E), i.e. Egl + Igyl < N < oo. Hence it follows that 

the roots of the right-hand side y_+ = --. x 1 + eg(y_,, e) exist as well as the definition of the relation y = y(rl) in terms 
of the quadrature 

as (5.8) 
11= _ ~/I-s  2 +eg(s,e) 
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Finally, representations (5.5) and (5.6) are obtained by bilateral estimates of the integral based on the equality 
Igl + Igyl < N. 

The following fact is useful for analysing the solutions of an equation of the form (5.3), which satisfy 
the conditions of Lemma 1. Certain quantities (relations between quantities) remain interesting in the 
limit as E ~ 0. These quantities (relations) will be called limit quantities (relations). 

For example, for solutions of the form (5.6) the limit quantities are X0 and L0, and also the limit period 
H 0 = 2re~b, which follows from (5.5). The limit relations give a good reference point when constructing 
accurate solutions (usually by numerical calculation), and also for a clear qualitative representation of 
the periodic motions described. In addition, limit relations are useful for establishing approximate 
relations between other parameters, on which the func t ionf  may depend. 

Remark  4. For periodic solutions of system (1.6) it follows from Proposition 1 that if B0 is the limit 
value of the function B(~), then the limit forms of relations (2.9) and (2.10) lead to expressions for the 
limit periods 

o t (ToBo-2n)=0,  P T o = 2 n ( v / B - a ) ,  O 0 = 2 n / p  (5.9) 

Moreover, if a quantity b (5.7) is defined for solving the corresponding key equation (4.2) or (4.4) and 
this solution is periodic with period ~, its limit value may be identical with H0, i.e. we should have 
~o = 2n/b. The following limit relation therefore follows from Eqs (5.9) 

b = p (5.10) 

6. T H E  GAS P E N D U L U M  

The "standard" solution with values (c~, 13) = (0, 1) was called a "gas pendulum" in [2]. However, the 
limit relations were not derived there; this gap is filled here. 

In key equation (5.4) for this case X = B, ~ = t, X = h, while the function f is such that 

f ( B , h ) = 4 B  3 h - B +  y - 1  B~-I (6.1) 

The region f2 is the half-plane B > 0, he E; we will assume that n + 2 ¢ 0 and y > 1. Equations 1 
from the condition of Lemma 1 are easily solved, and the point M(Bo, ho) is found from the 
equations 

Bo2-V = n + 2 ,  Cy -  l)ho = ( 7 - 2 ) B  o (6.2) 

The values of the derivatives 

f h ( M )  = 4B~,  fBB(M) = 4 ( y -  2)Bo 2 

obtained when calculating (6.2) show that conditions 2 of Lemma 1 are satisfied if and only if y > 2. 
In this case the constants a and b in (5.7) have the values 

a = ~]2B 0/(2 - y), b = B0~/4 - 2y (6.3) 

The periodicity conditions (2.9) and (2.10) here are 

O 

vJ B(t)dt = 2n, vO = T, la~ = 2n (6.4) 
o 

By Lemma 1, Eq. (4.4) with right-hand side f iB ,  ho + e2) has a ~-periodic solution 

B(t) = B o - fz~ cos bt + O(e 2 ) (6.5) 

By substituting solution (6.5) into the first relatio n of (6.4) it can be shown that for sufficiently small 
all the relations of (6.4) are satisfied only if v = \ 4 - 27 and B 0 = p. Of course we must have v = 1 
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and y = 3/2. In this case the phase and orbital periods are identical: • = T = 2~/~t. Limit relations (5.9) 
and (5.10) also give the same result. 

In the interpretation of the motion described as a periodic compression and expansion of a rotating 
gas cylinder [2] this means that after one cycle (period T) the gas completely recovers the initial state 
of motion, i.e. one obtains a "gas pendulum", pulsing with frequency ~t. 

7. F L O W S  W I T H  C L O S E D  S T R E A M L I N E S  

In the second "standard" case (~, [3) = (1, 0) we will have ~ = 0, which leads to steady gas flows. A 
similar solution was considered in [3] with the participation there of the self-similarity factor (z, which 
is equal to unity in solutions of the form (1.5). In addition, an analysis was carried out in [3] for isentropic 
flows, i.e. for m = 0 (Remark 1). Here this result is supplemented by indicating the limit forms of this 
kind of gas flow, in particular, by determining its periods. 

The key equation (4.2) in this case takes the form 

(dX / dO) 2 = A 2[n'y2 X 2 y  2/('~IXY- 1)] 2 (7.1) 

Expression (3.15) for Yin terms of X, after replacing the constant k ~ k / n ~  is given by the relation 

n'y2Xy = kX 2 + I (7.2) 

while the dependence ofA 2 on X is determined by the energy integral (3.9) 

y2A2 = 2hXI/ 'rY - nyXY - 1 (7.3) 

Here  the parameter  X = h. The region £2, in which the right-hand side f(X, h) of Eq. (7.1) satisfies the 
smoothness condition from Lemma 1, is fixed by the inequalities 

X > 0 ,  Y>0;  ~IXY>I 

Conditions 1 of Lemma 1 lead to an equation for the quantity Z = k S  2 

(~t - I)Z 2 - (y2 _ y + 2)Z + ),2 _ 1 = 0 

(7.4) 

with roots Z1 = y - l ,  Z 2 = (y + 1)/(y - 1). But it follows from relation (7.2) that yXY = (Z + 1) 
(y - 1)/2~,, and with the root Za it will be yXY = (y - 1)/2 while with the root Z2 it will be ~,XY = 1. 
Hence only the root Z1 applies, from which the point M(Xo, ho) is uniquely defined (h 0 is found from 
the condition for the right-hand side of (7.3) to be equal to zero). By inequalities (7.4), the membership 
M ~ ~ is only possible if y > 3. 

Calculation of the derivative f~x of the right-hand side ofF(X,  h) of Eq. (7.1) leads to the quantity 

f x x ( M )  = -8(~, - i)/(y - 3) (7.5) 

Of course, when y > 3 conditions 2 of the lemma are satisfied. Formula (5.7) defines the quantity 
b 2 = 4 (y - 1)/(y - 3). From the limit relation (5.10) we find possible factors y = (3~t 2 - 4)/(~t 2 - 4). The 
greatest value o fy  from which periodic gas motion of the form (1.5) exists, is obtained when ~t = 3 and 
is equal to 23/5. 

The periodicity conditions (2.9) give the equation ~t = v. According to definition (3.10), here 
B = 1/Y. Hence, the limit value of the orbital period, obtained from (5.9), is equal to To = 2nY0, where 
110 is found from relation (7.2), and we finally obtain 

T o = l t~ ( -y -1 )k /y  (7.6) 

where the constant k > 0 remains arbitrary. 
The closed streamlines of this gas flow are described by formula (3.6). They form an "asterisk" in 

the (r, 0) plane with v-bulges and hollows, and particles moving along these lines return to the initial 
position after a time interval (7.6). 
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8. THE GAS O P I N I O N  

A new form of periodic gas motion is described by the "standard" solution with (c~, 13) = (1, 1), when 
= 0 + t. To simplify the formulae, we will here consider the isentropic version, when m = 0 (Remark 

1), with y > 1 and n > 0. 
The key equation (4.2) in this case takes the form 

(aX/d~) 2 = f (X ,h )  =-- G2(X)F(X,h) (8.1) 

G(X) = yXY(nyX + 2) 
7Xy_ 1 ' F ( X , h ) = y 2 - n y X Y - I + 2 h X I / v Y  

Y = kXIt't(nyX + 2) ('t-t)l"t +(ny I2)Z X + l 

We will take ~. = h as the parameter, while the region ~ of smoothness of the right-hand side of (8.1) 
is specified by the inequalities 

X>0 ,  Y>0, y X Y ¢ i  

Conditions 1 of Lemma 1 reduce to the equations F = 0 and Fx = 0 and define the coordinates of 
the points M(Xo, ho) ~ f2 in terms of the quantity Y0 from the relations 

nTXoYo =(Yo -1) 2, hoX~/VYo = 1 - Yo (8.2) 

The first of conditions 2 of Lemma 1 is satisfied since fh = 2G2(Xo)X~/VYo > 0 in D. To realise the 
second condition we calculate the derivative fxx, the value of which at the point M(Xo, ho) (obtained 
by quite long calculations) is 

f xx (M)  = --4(Y 0 - l)2~0(Y0,n), ~p(Yo,n) = (2 - nYo)/[(Y o - 1) 2 - n] (8.3) 

Hence, the second condition 2 of Lemma 1 is equivalent to the inequalities Yo ¢ 1 and q9 (Y0, n) > 0. 
The latter is satisfied if and only if the point (Y0, n) belongs to the union of D with the region 
Dic~Z(Yo, n): 

Di ={n< 1, 0 < Yo < ! - -4~  } 

D2 ={n <1, I + ~ n < Y o < 2 / n }  

D3 ={n > i, 2 /n<Yo<l+- , f n  } 

Formula (8.3) gives q0(Yo, 1) = -l/Y0, i.e. the points ~P(Y0, 1) ~ D; hence necessarily n ~ 1 (y ~ 3). 
By virtue of Lemma 1, periodic solutions of Eq. (8.1) exist. The quantity b, according to (5.7), is given 

by the equation 

b 2 = 2(Yo-1)2cp(Yo, n) (8.4) 

By relations (3.10), B0 = (1-Y0)/Y0. The expression Y0 = 1-~/v follows from (5.9), and for the limit 
periods we obtain the formulae 

To = 2rc(v-~t)/B, ¢b o = 27t/B (8.5) 

By virtue of relation (5.10) Eq. (8.4) reduces to a relation which defines the possible factors n 

n = V(t.tZ-4)/(V3-2V + 2B) 

The results obtained reduce to the following formulation. 

(8.6) 

Theorem. For any integer ~t ~ 0 and v > 0, with which formula (8.6) gives the quantity n > 0, n ~ 1, 
the system of equations (1.6) with (cq 13) = (1, 1) with values o fn  (8.6) and y = (n + 2)/n has a solution 
describing the periodic gas motion with limit periods (8.5). 
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Proof. The relations indicated in the condition of the theorem guarantee that the point (Y0, n) falls 
in the region D, where Y0 = l -p /v .  The rest follows from Lemma 1 and Note 4. 

The equation r = r(~) of the "invariant streamlines" Lv( ~ = const), by relations (3.6), (3.10) and 
(3.1), here reduces to the form 

r = ro X-I I'ty~ (8.7) 

where r0 depends only on ~, while the functions X = X(~), Y = Y(~) are periodic with phase period ~. 
The lines L v are closed in the plane of the polar coordinate, (r, ~), i.e. they form an "asterisk" with I g I 
"teeth". Unlike the situation described in Section 7 here the "asterisk" (8.7) in the (r, 0) plane rotates 
with limit angular velocity d~dt  = l/Y0, while the gas particles run round the line L v and return to the 
initial position after a time T. This form of the gas motion has been called the "gas pinion", the number 
of "teeth" of which can be any integer [ g I ~ 2. It is curious that when Y0 > 1 the motion of the gas 
particles occurs in a direction opposite to the rotation of the pinion. 

We note in conclusion that the limitations of a journal article has not enabled us to describe all the 
results obtained in more detail, in particular, the existence of a non-isentropic "gas pinion". We can 
only raise the question of whether an exhaustive description of all possible forms of periodic gas motions 
when there are no external forces or energy actions has been given by these investigations. Although 
there are some "general considerations" which favour a positive answer, the question still remains open. 
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